
Cryptographic Execution Time for WTLS Handshakes on Palm OS Devices

Neil Daswani
Stanford University

daswani@cs.stanford.edu

Abstract

This paper analyzes the cryptographic operation time that is required to execute
secure transactions on wireless PDAs with WAP browsers. We evaluate the
time required to execute the necessary cryptographic operations to set up a
WTLS connection on a Palm OS device with both ECC-based public key
cryptography as well as with RSA-based public key cryptography. We find that
the execution times for server-authenticated 1024-bit RSA handshakes can be up
to twice as fast as for server-authenticated 163-bit ECC-based handshakes, but
that the execution time for mutually-authenticated (client and server
authenticated) handshakes is at least eight times faster using ECC-based
handshakes.

1. Introduction

WAP browsers for wireless handhelds such as Palm, Windows PocketPC, Psion, and RIM
devices are gaining popularity, and may prove to become an important part of how users access
wireless services. For example, AU Systems [3] has ported its WAP browser to the Palm
platform. EZOS [4] has developed EzWAP, a WAP browser that supports the Windows CE
platform. Psion [5] has licensed WAP browser technology from Purple Software and Dynamical
Systems Research, and is currently beta testing the product. In addition, Neomar [6] has built a
WAP browser for the RIM Interactive Pager platform. In the near future, WAP browsers may
become a standard “in-the-box” application on wireless PDAs.

As of the writing of this paper, none of these WAP browsers support secure connections or
transactions with the gateways that they communicate with, although some companies have
announced that such support is forthcoming. Neomar, for example, has licensed WTLS Plus
from Certicom [7], and will be incorporating WTLS support in upcoming versions of its WAP
browser on the Palm and RIM platforms. If mobile commerce is to take-off, WAP browsers will
be required to make secure connections to the WAP gateways with which they communicate.
Creating a secure connection will incur some computational overhead, and will likely increase
the time required to set up a connection with a gateway.

It is important to understand exactly how much extra time setting up a secure connection will
require. If too much time is required to set up a secure connection, this may affect the usability
of the wireless PDA for secure transactions, and users may decide that executing secure
transactions on wireless PDAs is simply too inconvenient. At the same time, if the appropriate
level of security is not provided, corporations may not be willing to take the risk to allow
electronic commerce transactions from mobile devices.

This paper analyzes the cryptographic operation time that is required to execute secure
transactions on wireless PDAs with WAP browsers. We evaluate the time required to execute

1

the necessary cryptographic operations to set up a WTLS connection on a Palm OS device with
both ECC-based public key cryptography as well as with RSA-based public key cryptography.
We find that the execution times for server-authenticated 1024-bit RSA handshakes can be up to
twice as fast as for server-authenticated 163-bit ECC-based handshakes, but that the execution
time for mutually-authenticated (client and server authenticated) handshakes is at least eight
times faster using ECC-based handshakes.

Section 2 of this paper reviews WTLS and the cryptographic computations that must be
computed by the client (in our case, a wireless PDA). Section 3 describes the results of
experiments benchmarking various cryptographic operations on a Palm VII device, which will
serve as a prototypical wireless PDA for our study. Using the benchmarking results obtained in
Section 3, Section 4 estimates the time required to execute secure handshakes in both server-
authenticated and mutual-authenticated handshakes. Section 5 comments on our results, and
Section 6 concludes the paper.

2. A Review of WTLS

WTLS is the Wireless Transport Layer Security protocol designed to support the security
requirements of authentication, privacy, and integrity in the Wireless Application Protocol
(WAP) [1] defined by the WAP Forum.

In the following, we review the steps required in a full WTLS handshake, and we will identify
the necessary cryptographic operations required on the client. Although this section is written to
be self-contained, the reader is referred to [2] for an overview of WTLS.

In a full WTLS handshake, two round-trips are required before the client and server can start
exchanging encrypted application data. In the first round-trip, client and server hello messages
are exchanged. These messages are used to negotiate protocol versions, key exchange suites,
cipher suites, and a number of other parameters. If the client is to authenticate the server, the
server is expected to send the client its public-key certificate in the second half of the first round
trip. When the client receives the server’s certificate, it validates the certificate by verifying the
CA’s signature on the certificate.

The exact messages that are exchanged next depend upon 1) whether only the server or both
parties are to be authenticated, and 2) whether RSA or ECC is to be used for key agreement and
authentication. Let us consider the server-authenticated only case first. The reader may refer to
Figure 1 for an illustration of the messages that are exchanged between the client and server in
the server-authenticated only case.

2

Server-Authenticated Only

In the server-authenticated only case, the client sends a ClientKeyExchange message to the
server after receiving the server’s certificate.

Figure 1: Server-Authenticated Only WTLS Messages

If RSA is to be used for key agreement, the client generates a random value to be used as the pre-
master secret, and encrypts the pre-master secret with the server’s public key. The encrypted
pre-master secret is sent to the server in the ClientKeyExchange message. The server
decrypts the pre-master with its private key, and the pre-master secret is now known to both
parties.

On the other hand, if ECC-DH is to be used for key agreement, the client generates an EC Diffie-
Hellman public key, and sends it to the server in the ClientKeyExchange message. To
derive the pre-master secret, the client multiplies the server’s public key with its the Diffie-
Hellman private key. (The server derives the pre-master secret by multiplying the EC Diffie-
Hellman pubic key with its private key.)

Therefore, in the server-authenticated only case, the cryptographic operations required on the
client are: 1) verification of the server’s certificate, and 2) session key establishment. In the case
that RSA is used for key agreement, an encryption with the server’s public key is required. In the
case that ECC-DH is used for key agreement, the client needs to generate an ECC-DH key pair
and the appropriate multiplications for key agreement need to take place.

3

ClientHello ----------->
ServerHello
Certificate

<----------- ServerHelloDone
ClientKeyExchange
ChangeCipherSpec
Finished ----------->

<----------- Finished
Application Data <-----------> Application Data

Mutual Authentication

The messages exchanged in the mutual-authentication case are shown in Figure 2. After the
ServerHelloDone message is received, the client sends its certificate to the server.

Figure 2: Mutual-Authentication WTLS Messages

If RSA is to be used for key agreement, the client transmits a ClientKeyExchange message
to the server just as in the server-authentication only case, but then sends a
CertificateVerify message to the server containing an RSA signature on all handshake
messages starting from the ClientHello message up to (but not including) the
CertificateVerify message.

If ECC-DH is to be used for key agreement in the mutual-authentication case, a
ClientKeyExchange message does not need to be sent to the server since we assume the
client’s certificate (that was already sent to the server) contains the appropriate ECC-DH public
key. However, an explicit ECC-DSA signature is required to authenticate the client, and this
signature is sent in a CertificateVerify message.

The cryptographic operations required on the client in the mutual-authentication case are the
same as those in the server-authenticated only case with the addition that the appropriate RSA or
ECC-DSA signature needs to take place to create the CertificateVerify message.

After the appropriate Certificate and ClientKeyExchange messages are sent by the
client as needed, the pre-master secret is set, the master secret is computed, the client transmits
the ChangeCipherSpec message, both parties transmit Finished messages, and the client
and server can then start exchanging application data encrypted with the master secret. The
computation of the master secret from the pre-master secret only requires a number of hashes
whose computation time is relatively insignificant compared to the other cryptographic
operations required of the client, and hence will not be explicitly included in the timing estimates
described in this paper.

4

Client Hello -----------> ServerHello
Certificate
CertificateRequest

<----------- ServerHelloDone
Certificate
ClientKeyExchange (only for RSA)
CertificateVerify
ChangeCipherSpec
Finished ----------->

<----------- Finished
Application Data <-----------> Application Data

3. Benchmarking Experiments

Figure 3 shows execution times for various ECC and RSA cryptographic primitives on various
Palm OS platforms.

New Palm VII
(Dragonball-EZ,
20MHz, PalmOS

v.3.2.5) (ms)

Palm V
(Dragonball-EZ,

16.6MHz, PalmOS
v.3.3) (ms)

Old Palm VII
(Dragonball,

16.6MHz, PalmOS
v. 3.1) (ms)

ECC Benchmarks (163-bit)
Key Generation 372.4 514 556
Key Expansion1 254.8 350 378

Diffie-Hellman Key Agreement 335.6 462 500
ECC-DSA Signature

Generation
514.8 713 773

ECC-DSA Signature
Verification

1254 1740 1885

RSA Benchmarks(1024-bit)2

Private Encrypt 21734 27808 29628
Public Decrypt (e=3) 598 758 790

Public Decrypt (e=65537) 1482 1860 1966
Public Encrypt 622 798 834

Figure 3: Execution times for RSA and ECC cryptographic primitives

Notes about the benchmarks:

 The RSA benchmark program used the RSA, SHA, big number, and random number
modules of the SSLeay cryptographic library that was ported to Palm OS by Ian
Goldberg. The particular version of SSLeay that was used for the benchmarks described
here was optimized by Ian Goldberg and Nagendra Modadugu, and has been used at the
Network Security Research group at Stanford University for security-related research.

 The ECC benchmark program was built using Certicom’s Security Builder Release 2.2
for Palm OS.

 CodeWarrior Release 6 for Palm OS was used to compile both the RSA and ECC
benchmarks.

 The RSA benchmark program was written by Rob Lambert’s team at Certicom. The
ECC benchmark program was written by Chris Hawk at Certicom. For the particular
operations that were used in this report, the source code of both of the ECC and RSA
benchmark programs were code reviewed to ensure that the programs execute those
cryptographic operations that they claim to execute in their respective user interfaces. In
addition, the source code was independently re-compiled, linked, and executed to
generate the timing measurements described in this report.

4. WTLS Handshake Timing Estimates

1 Certicom’s ECC library requires that public keys be expanded into a more efficient representation before
they can be operated on. These key expansions are not necessary in an RSA-based handshake, and hence
the extra time to execute these operations was also modeled in the benchmarks.
2 The decryption timing measurements for RSA were measured for both of e=3 and e=65537. It should be
noted that e=65537 is more commonly used for most security applications and public decryption operations
take longer to execute with e=65537.

5

The WTLS handshake timing estimates described in this section were derived by adding together
the appropriate execution times for the cryptographic primitives from Section 3 involved in the
ECC-based and RSA-based handshakes as described in Section 2.

Server-Authenticated Only WTLS Handshake

Operation Cryptographic Primitive(s) Time Required (ms)
Server Certificate Verification CA Public Key Expansion 254.8

ECC-DSA Signature Verification 1254
Session Key Establishment ECC Key Generation

(DH Ephemeral Key) 372.4

Server Public Key Expansion 254.8
Key Agreement 335.6

TOTAL 2471.6
Figure 4: ECC Server-Authenticated Only WTLS Handshake on a 20 MHz Palm VII

Operation Cryptographic Primitive(s) Time Required (ms)
Server Certificate Verification RSA Signature Verification

(Public decrypt, e=3) 598

Session Key Establishment RSA Encryption (Public encrypt) 622
TOTAL 1220

Figure 5 (a): RSA Server-Authenticated Only WTLS Handshake on a 20 MHz Palm VII (e=3)

Operation Cryptographic Primitive(s) Time Required (ms)
Server Certificate Verification RSA Signature Verification

(Public decrypt, e=65537) 1482

Session Key Establishment RSA Encryption (Public encrypt) 622
TOTAL 2104

Figure 5 (b): RSA Server-Authenticated Only WTLS Handshake on a 20 MHz Palm VII (e=65537)

 Using ECC technology to execute the public-key cryptographic operations for a server-
authenticated only handshake, the necessary operations take 2.47 seconds. This
measurement was determined by using Certicom's Security Builder product for Palm
devices, and used an ECC key length of 163 bits.

 Using RSA technology to execute the necessary cryptographic operations for a server-
authenticated only handshake, the necessary operations take 1.22 seconds for e=3, and
2.10 seconds for e=65537. This measurement was determined by using an optimized
version of Ian Goldberg's port of Eric Young's SSLeay package to the Palm. The
measurement used a RSA key length of 1024 bits.

 The cryptographic execution time for server-authenticated 1024-bit RSA
handshakes is up to 2 times as fast as the cryptographic execution time for server-
authenticated 163-bit ECC handshakes on the Palm VII.

Mutual-Authentication WTLS Handshake

6

Operation Cryptographic Primitive(s) Time Required (ms)
Server Certificate Verification CA Public Key Expansion 254.8

ECC-DSA Signature Verification 1254
Session Key Establishment Server Public Key Expansion 254.8

Key Agreement 335.6

Client Authentication ECC-DSA Signature Generation 514.8
TOTAL 2614

Figure 6: ECC Mutual-Authentication WTLS Handshake on a 20 MHz Palm VII

Operation Cryptographic Primitive(s) Time Required (ms)
Server Certificate Verification RSA Signature Verification

(Public decrypt, e=3) 598

Session Key Establishment RSA Encryption (Public encrypt) 622
Client Authentication RSA Signature Generation (Private

encrypt) 21734

TOTAL 22954
Figure 7(a): RSA Mutual-Authentication WTLS Handshake on a 20 MHz Palm VII (e=3)

Operation Cryptographic Primitive(s) Time Required (ms)
Server Certificate Verification RSA Signature Verification

(Public decrypt, e=65537) 1482

Session Key Establishment RSA Encryption (Public encrypt) 622
Client Authentication RSA Signature Generation (Private

encrypt) 21734

TOTAL 23838
Figure 7(b): RSA Mutual-Authentication WTLS Handshake on a 20 MHz Palm VII (e=65537)

 Using ECC technology to execute the public-key cryptographic operations for a mutually
authenticated handshake, the necessary operations take 2.61 seconds. This measurement
was determined by using Certicom's Security Builder product for Palm devices, and used
an ECC key length of 163 bits.

 Using RSA technology to execute the necessary cryptographic operations for a mutually
authenticated handshake, the necessary operations take 22.9 seconds for e=3 and 23.8
seconds for e=65537. This measurement was determined by using an optimized version
of Ian Goldberg's port of Eric Young's SSLeay package to the Palm. The measurement
used a RSA key length of 1024 bits.

 The cryptographic execution time for mutually-authenticated 163-bit ECC
handshakes is at least 8.64 times as fast as the cryptographic execution time for
mutually-authenticated 1024-bit RSA handshakes on the Palm VII.

7

5. Notes / Comments

 The benchmarks designed and implemented for the purposes of this paper strictly
measure the CPU time required for the execution of cryptographic operations involved in
a WTLS handshake. In a real end-to-end WTLS handshake between a Palm VII device
and a WAP gateway, network latencies, data transmission, and lower-level protocol
handshake times would also be involved in execution of the protocol. (Network
latencies and lower-level protocol handshake times should be similar regardless of
whether an RSA-based or ECC-based WTLS handshake is measured. However, one
would expect that the data transmission times in a RSA-based WTLS handshake should
be longer due to longer keys and certificates being transmitted across a wireless network
for handshakes of comparable cryptographic strength.)

 For ECC-based implementations of WTLS, the public keys for all trusted CAs can be
stored in expanded form to eliminate the need to expand these keys just prior to
connection setup. If this is done for server-authenticated only connections, the total time
spent executing cryptographic operations would be 2.22 seconds, which is comparable to
the 2.10 seconds that would be required for an RSA-based server-authenticated
connection where e=65537. Also, by making this optimization, ECC-based
implementations of mutually-authenticated WTLS can be made to execute 10.75 times
faster than an RSA-based implementation where e=65537.

 1024-bit RSA-based, mutually-authenticated handshakes will most likely be take too
long for most users, and would affect the usability of secure wireless transactions.
Shorter key-lengths for RSA-based handshakes could be used to produce a more
acceptable user experience, but service providers may not be willing to take the risk or
provide certain applications under shorter key lengths. ECC-based handshakes may be
the best option for service providers and users that would like mutual authentication.

 This paper reports the results of timing benchmarks on the Palm VII device as a
prototypical wireless PDA. As a reference for comparison, listed below are processors
and clock cycle speeds for several other popular PDAs in the market. The various
handheld devices listed below have a variety of processor types (both CISC and RISC),
and a range of click cycle speeds (10 MHz to 190 MHz). RIM devices run at the slowest
clock speed (10 MHz) with Intel 386 microprocessors while the Windows CE devices
run at the fastest clock speeds with NEC and Intel RISC microprocessors.

PDA Microprocessor Speed
Palm, Handspring Motorola Dragonball 16.6 – 20 MHz
RIM Interactive Pager Intel 386 10 MHz
Compaq Aero 1530 NEC/VR4111 MIPS RISC 70 MHz
HP Jornada 820 Intel/StrongARM RISC SA-1100 190 MHz
Casio Cassiopeia E-100 NEC/VR4121 MIPS 131 MHz
Psion Revo ARM 710 36 MHz
Psion Series 5 Digital/Arm 7100 18

Figure 8: Microprocessors and clock speeds of some popular PDAs.

8

If the benchmarks from Section 3 were run on the various devices in Figure 8, it
is reasonable to expect the actual speeds would likely vary proportional to the
clock speed of the microprocessor, but the ratios involved would be constant.
For example, the ratio of ECC-DSA verification time to signature time should
still be approximately 2.4:1. .

Hence, the execution times for server-authenticated RSA handshakes should be
approximately twice as fast as for server-authenticated ECC-based handshakes,
and the execution time for mutually-authenticate handshakes should be
approximately eight times faster using ECC-based handshakes than RSA-based
handshakes, independent of the particular microprocessor and its clock cycle
speed.

6. Conclusion

To date, the few WAP-browsers that exist for wireless PDAs do not support WTLS. However,
WTLS will be instrumental in providing security for WAP services. It is important to understand
the cryptographic efficiency of WTLS on these constrained devices as it affects usability of these
devices for secure transactions. In studying the WTLS protocol, the cryptographic requirements
of the protocol, and the time required to execute the required operations, we have found that
1024-bit RSA-based handshakes can be up to twice as fast as 163-bit ECC-based handshakes for
server-authenticated only WTLS connections, and that 163-bit ECC-based handshakes are at
least 8 times as fast as 1024-bit RSA-based handshakes for mutually-authenticated WTLS
connections.

9

7. References

[1] WAP Forum, Wireless Application Protocol Specification Version 1.1, 4.30.1998

[2] WAP Forum, Wireless Transport Layer Security Specification Version 1.1, 11.2.1999

[3] AU-Systems WAP Browser Home Page, http://www.wapguide.com/wapguide/browser.html

[4] EZOS EzWAP Browser Page, http://www.ezos.com/

[5] Psion WAP Browser Beta Page, http://wap.psion.com/

[6] Neomar RIM WAP Browser Page, http://www.neomar.com/

[7] Neomar Press Release, http://www.neomar.com/press/00.05.23certicom.html

Acknowledgements

Thanks to Tim Dierks, Rob Lambert and his team, and Chris Hawk for authoring the ECC and
RSA benchmarking programs.

Thanks to Nagendra Modadugu for his support in helping prepare the RSA benchmark to
compile against his optimized version of the SSLeay library, and for generating some of the
preliminary RSA timing measurements that helped validate measurements in this report.

10

