
Pong-Cache Poisoning in GUESS ∗

Neil Daswani and Hector Garcia-Molina
Computer Science Department

Stanford University
Stanford, CA 94305-9045

{daswani,hector}@db.stanford.edu

ABSTRACT
This paper studies the problem of resource discovery in
unstructured peer-to-peer (P2P) systems. We propose
simple policies that make the discovery of resources re-
silient to coordinated attacks by malicious nodes. We
focus on a novel P2P protocol called GUESS [8] that
uses a pong cache, a set of currently known nodes, to
discover new ones. We describe how to limit pong
cache poisoning, a condition in which the ids of mali-
cious nodes appear in the pong caches of good nodes.
We propose an ID smearing algorithm (IDSA) and a dy-
namic network partitioning (DNP) scheme that can be
used together to reduce the impact of malicious nodes.
We also propose adding an introduction protocol (IP)
as a basic mechanism to GUESS to ensure liveness.
We suggest using a most-recently-used (MRU) cache re-
placement policy to slow down the rate of poisoning.
Finally, we determine the marginal utility of using a
malicious node detector (MND) to further limit poison-
ing, and the level of accuracy required of the detector.

Categories and Subject Descriptors
C.2.0 [Computers-Communication Networks]: Gen-
eral—Security and protection; H.3.4 [Information Stor-

age and Retrieval]: Systems and Software—Distributed
systems, Information networks; I.6.3 [Simulation and

Modeling]: Applications

General Terms
Security, Algorithms, Measurement, Experimentation

Keywords
peer-to-peer, security, denial-of-service

∗This work was partially supported by NSF Grant
CCR-0208683.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’04, October 25-29, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-961-6/04/0010 ...$5.00.

1. INTRODUCTION
In this paper we study the problem of resource dis-

covery in unstructured peer-to-peer (P2P) systems, and
we propose simple policies that make the discovery of
resources (or nodes) resilient to coordinated attacks by
malicious nodes. For concreteness, we focus on a novel
P2P protocol called GUESS (Gnutella UDP Extension
for Scalable Searches) [8] that is under consideration by
the Gnutella Development Forum (GDF) [10], a group-
ing of independent Gnutella software vendors, for use
in the Gnutella P2P network. The Gnutella file-sharing
network is one of the most widely used P2P networks
with over 100,000 concurrent users on the network at
any one time offering 5 to 10 terabytes of files. In ad-
dition, over 10 distinct vendors have deployed Gnutella
application software and over 35 million copies of these
applications have been downloaded by users. We also
note that other extremely popular P2P protocols such
as FastTrack and eDonkey already use protocols similar
to GUESS for resource discovery, and hence could also
benefit from the techniques we develop in this paper.

As opposed to traditional Gnutella networks in
which flooding is used to propagate queries through
a software overlay topology, nodes in a GUESS net-
work explicitly query other nodes one at a time. The
protocol design was partially motivated by results on
random walks in unstructured P2P networks [13]. In
GUESS, each node keeps a cache of other nodes that
are available to accept queries, and sends its queries to
one of the nodes in its cache at random. Nodes are re-
quired to manage the cache by deleting nodes that are
no longer available, and adding new nodes that are avail-
able. Nodes exchange information about which nodes
are available by exchanging “ping” and “pong” mes-
sages, and, as a result, the caches that nodes use to
store node ids of other nodes are called “pong caches.”

Initial evaluations [1] suggest that GUESS can be a
significantly more efficient search mechanism, compared
to basic Gnutella, essentially because flooding is re-
placed by directed querying that can be throttled by the
originating node. Furthermore, queries are not routed
through untrusted third parties, so GUESS nodes are
less susceptible to attacks by such intermediaries.

However, GUESS does have a new potential secu-
rity weakness: the pong caches. For reasons that we
describe in Section 3, malicious nodes will be interested
in having their node ids appear in the pong caches of

good nodes as a pre-cursor to many forms of attack.
When ids of malicious nodes appear in the pong cache
of a good node, we say that the good node’s pong cache
has been poisoned. And once a cache is poisoned, it
becomes very hard for a good node to find other good
nodes that may provide useful results. In this paper we
focus on this pong-cache poisoning problem, and sug-
gest techniques for making nodes more resilient to this
attack.

The techniques that we propose are complemen-
tary to existing security mechanisms, and help us imple-
ment defense-in-depth within the context of a GUESS
network. In particular, there are three rough categories
of defenses that are required:

• Prevention. These defenses make it hard for ma-
licious nodes to participate in the system. For in-
stance, we can require that nodes obtain certified
node ids, as proposed in reference [3], to limit the
absolute number of malicious nodes, and/or require
nodes to solve crypto-puzzles to obtain node ids with
the intent of slowing down the rate at which mali-
cious nodes can join.

• Detection. These defenses identify malicious nodes
that have joined and attempt to remove them from
the network and/or revoke their privileges. For in-
stance, one can use a collaborative trust system to
identify nodes that are providing bad results or mis-
behaving in other ways.

• Containment. Finally, these defenses attempt to
minimize damage from nodes that have entered the
system and have not yet been detected. Our tech-
niques to deal with pong-cache poisoning are in this
category.

We believe that for best results all three types of
defenses must be employed in GUESS, or in any large
scale distributed system. Since prevention and detec-
tion cannot be expected to work perfectly in practice, it
is safer to design the GUESS cache management policies
under the assumption that a few malicious nodes have
gotten through and may poison caches. Indeed, as we
will see in Section 5, even just a few malicious nodes can
poison a large fraction of all the caches in the network,
if good cache management policies are not used. Thus,
it is critical to have strong containment policies in place.
Of course, our policies will only reduce pong-cache poi-
soning instead of eliminating it altogether. As such, the
policies we propose and evaluate provide practical secu-
rity; they do not necessarily provide “provable” security.

Note that we are conducting this work early in
the evolution of GUESS instead of waiting after its ini-
tial deployment, such that the protocol will not have to
be retrofitted with security features only after the fact.
Some of the decisions that nodes need to make are cur-
rently unspecified in the existing protocol specification,
and we fill in these gaps with recommendations on how
nodes should make these decisions to deal with attacks.

Also note that while we focus on the ping-pong
resource discovery protocol used in GUESS, the need to
maintain caches of available peers also arises in other
contexts, such as wireless ad-hoc networks, grid com-
puting, and autonomic computing. Thus, we believe

that our work can be generalized in a straightforward
fashion to be applied in these other areas.

Our specific contributions in this paper are:

• We define a model that captures how ping and pong
messages affect pong cache behavior, and we de-
scribe the key decisions that nodes must make as
they interact with other nodes (Section 2).

• We define expected behaviors for good and malicious
nodes, and we outline the key research goals that
need to be addressed to deal with pong-cache poi-
soning in GUESS (Section 3).

• We propose new mechanisms and improvements to
existing mechanisms in the protocol to mitigate at-
tacks by malicious nodes. These mechanisms con-
trol how nodes should initialize, insert, delete, and
replace entries in their caches (Section 4).

• We evaluate the impact that malicious nodes have by
poisoning pong caches of good nodes, and how the
various policies that we propose mitigate poisoning
(Section 5).

In closing this introduction, we make one final ob-
servation. Protocols like GUESS and Gnutella are called
“unstructured” because each peer decides on its own
what content to store and make available for search-
ing. On the other hand, in a structured network (like
a distributed hash table [15, 18]), data is algorithmi-
cally placed at nodes. Unstructured networks are more
common in practice, and are used everyday to handle
huge numbers of users and massive content. Indeed,
out of the ten or so major file-sharing P2P protocols
most widely used on the Internet (FastTrack, eDonkey,
Gnutella, etc.), all except one (OverNet) are unstruc-
tured. Thus, we feel it is very important to study secu-
rity issues in such systems, as we do in this paper. This
is not to say that DHTs may be more or less secure, or
more or less efficient. We believe that both approaches
are worthy of investigation, but in this particular paper,
we only have space to study one of the approaches.

2. BASIC MODEL
Our model considers a set of n nodes in a peer-to-

peer network. Initially, the set of nodes participating
in the network is N = {N1, N2, ..., Nn}. Gnutella net-
works are made up of leaf nodes and supernodes, where
supernodes have more processing power and capacity
than leaf nodes. We only choose to model supernodes
(also known as Ultrapeers) in the network, as leaf nodes
only send pings to supernodes, and do not respond to
pings themselves. Since our model focuses on supern-
odes, the term node will be used to refer to a supernode
in the remainder of the paper.

Some subset of the nodes in N are good, while
others are malicious. Good nodes, in general, follow
the protocols we describe, while malicious nodes may
or may not. We assume that G denotes the set of good
nodes, and that M denotes the set of malicious nodes.
Of course, at any instant G∪M = N and G∩M = ∅. We
describe our threat model and the expected behaviors
of malicious nodes in detail in Section 3.

Not all of the nodes in the system are expected to

be available at the same time. Indeed, we expect some
percentage of the nodes to be unavailable most of the
time, although we expect the specific set of nodes that
are unavailable at any given time to vary. Some typical
reasons for unavailability could be node failure, overload
due to a denial-of-service attack, or (if the node is a mo-
bile device) it may be simply out of range of some of the
other nodes in the network. We say that a node that
becomes unavailable has “died.” This “death” may not
be permanent, but from the standpoint of resource dis-
covery, the node will need to be re-discovered by other
nodes once it becomes available again.

At some instant in time, a set of nodes ∆ ⊆ G may
die. At the same time that the set of nodes in ∆ die, a
set of nodes, B, can be born. The new set of nodes in
the system is N ′ = (N −∆) ∪B.

We assume that each node Ni keeps a list of nodes
that it typically relies on. In a GUESS network, this
list is called a pong cache. Each node Ni has a fixed-
size pong cache, P (Ni), associated with it where P (Ni)
is a set of node ids. The set P (Ni) may change over
time.

At a given point in time, a particular cache en-
try is said to be either live, poisoned, or dead. Live
cache entries are ones that contain the node ids of good
nodes that have joined the system and are available to
respond to queries with legitimate results. Cache en-
tries containing malicious node ids are not considered
live ids, but poisoned. Dead cache entries contain the
node ids of good nodes that have temporarily or per-
manently left the system. The sum of the number of
live, poisoned, and dead cache entries equals the total
number of pong cache entries in the system.

A node Ni may decide to ping another node Nj to
determine if it is live. A ping is simply a “no-operation”
query to which a node is expected to respond if it is
available. Since message passing incurs network and
computational overhead in real systems, a ping may
contain a request to process a query instead of just be-
ing a “no-op.” When node Nj receives the ping, it
may respond to Ni with a pong that tells Ni that Nj is
“live.”

In our model, a node Ni may choose to ping any
node Nj ∈ P (Ni) in its pong cache. Node Ni chooses
which Nj according to a ping probe policy. If node Nj

temporarily or permanently dies, Ni may not receive a
response to its ping after some timeout period, and Ni

may decide to remove Nj from its cache. Node Ni could
also decide to keep the cache entry around in the hope
that Nj may become available again at some time later.

As part of the pong that Ni receives from Nj , Ni

receives a set of node ids S = {Nk1, Nk2, ...Nk|S|} where
Nki ∈ N, 1 ≤ i ≤ |S|. The nodes in set S are chosen
by Nj from its pong cache (S ⊆ P (Nj)) using a pong
choice policy.

Upon receiving S, Ni may replace any subset of
P (Ni) with any subset of S to create P ′(Ni), node Ni’s
updated pong cache. Let X be any subset of P (Ni), and
Y be any subset of S. Then, P ′(Ni)← (P (Ni)−X)∪Y .
For example, since the empty set is a subset of P (Ni),
and Y could be exactly equal to S, Ni could simply add
all of the entries received from Nj to its pong cache.

Of course, pong caches in real systems typically have a
fixed-size, and require other choices for X and Y . We
will refer to the exact method that node Ni uses to
determine the sets X and Y as the cache replacement
policy.

When a node Nk is newly born, its pong cache,
P (Nk), needs to be initialized. We say that Nk’s pong
cache needs to be “seeded” when the node is born, and
we explore various seeding policies in Section 4.1.

It is important not only for new nodes to have their
caches seeded with existing node ids when they are born,
but it is equally as important for existing nodes to find
out about new nodes that have joined the network. As
we will see in Section 5, after some amount of time a ma-
jority of the entries in a node’s pong cache can become
invalid due to the deaths of the corresponding nodes. To
eliminate this problem, we propose adding an introduc-
tion protocol (IP) to GUESS in which a new node Nk

may want to make itself available to existing nodes by
having its id added to their pong caches. In Section 4.2,
we describe an IP that can be used to accomplish this.

Figure 1 shows an example of how resource dis-
covery takes place in a GUESS network. The large,
rounded squares represent nodes N1 and N2, and the
box within each node represents that node’s pong cache.
The top half of the figure shows the state of the nodes
before any interaction between them takes place. Ini-
tially, node N1 has the node ids of nodes N2 and N3 in
its pong cache. The figure shows what happens when
node N1 pings N2. In particular, N1 chooses N2 from
its pong cache, and sends N2 a ping message. N1 could
have alternatively chosen to ping N3 since N3 is also
in its pong cache. In response to the ping, N2 chooses
a set, say S = {N4}, from its pong cache. N2 could
have also potentially chosen any of the other three pos-
sible subsets of P (N2) as its response to the ping. In
the example in Figure 1, N1 choses to update its pong
cache by replacing the N3 entry (X = {N3}) with N4

(Y = {N4}). The lower half of the figure shows the
resulting state: Node N1 computes P ′(N1) = (P (N1)−
X) ∪ Y = {N2, N4} as its updated pong cache.

We may view the model above in one of two (equiv-
alent) ways. In one view, such a network has no over-
lay topology, and queries are sent to nodes whose ids
are chosen from pong caches in an ad-hoc fashion. An-
other way of thinking about GUESS is that it does have
an overlay topology which evolves dynamically. Specif-
ically, we can think of P (Ni) as the neighbors of Ni. In
this view, the set of neighbors that a node has is larger
and more dynamic than in traditional Gnutella, with
the exception that we do not flood, and queries are only
processed by direct neighbors.

3. THREAT MODEL
While there might exist various prevention and de-

tection mechanisms in a GUESS system (as mentioned
in Section 1), some number of malicious nodes may
still be able to join. For instance, we might require
that nodes obtain certified node ids as proposed in refer-
ence [3]. However, Sybil attacks might still be possible.
A Sybil attack [9] is one in which a malicious adversary
generates or obtains many node ids (identities). A ma-

BEFORE:

N2

1) N1 sends ping message to N2

2) N2 returns pong message S = {N4}
3) N1 chooses X = {N3} and Y = {N4}
4) N1 computes P ′(N1) = (P (N1) − X) ∪ Y ={N2, N4}

N5

N4

6& %

?

$'
'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

N3

P (N2)

ping

P (N1)
N1 N2

pong

N4

N4 N5

P (N2)

N2

AFTER:

N1 N2P ′(N1)

Figure 1: An example of a ping and pong be-

tween two good nodes in a GUESS network.

licious adversary could do so by paying for node ids, or
compromising the security of existing hosts that have
valid node ids. In our threat model, there is some non-
negligible cost (i.e., time and/or money) for obtaining a
node id, and malicious nodes can acquire some limited
number of node ids.

While there are many possible attacks that can be
conducted by malicious nodes that have taken control
of node ids, we focus on one key class of attacks in this
paper. In particular, malicious nodes may collude to
conduct “pong-cache poisoning” attacks in which they
attempt to propagate malicious node ids in as many
pong caches as possible. We believe that the poisoning
of pong caches will be the first step in many forms of
distributed attacks in a GUESS system.

In a pong-cache poisoning attack, malicious nodes
respond to pings from good nodes with node ids of other
malicious nodes. Good nodes may then insert the ids
of malicious nodes into their cache. There are (at least)
three specific reasons why the insertion of malicious
node ids into the caches of good nodes is bad:

1. Denial-of-Service (DoS). A good node may query
a malicious node, and may not receive a response.

2. Inauthentic Results. A good node may query a
malicious node, and may receive a response that
contains incorrect answers to the query.

3. Propagated Cache Poisoning. A good node may
respond to pings from other good nodes with a ma-
licious node id, thereby making other good nodes
susceptible to the two problems above.

Once good nodes rely on the services of malicious
nodes, the malicious nodes will have many options avail-
able to them as to what type of damage they would like

to incur. For instance, the malicious nodes could con-
duct a distributed denial-of-service attack in which they
all decide to “die” at the same time, thereby creating a
situation in which good nodes have a large number of
“dead” cache entries and are unable to service queries
from their clients due to the resulting network fragmen-
tation and/or partition. Alternatively, the malicious
nodes could continue to offer service to the good nodes,
but all respond with inauthentic copies of documents.
We do not consider these post-poisoning attacks here.
We only cite them to motivate why containment of poi-
soning is so critical and why techniques that specifically
address containment should be deployed as an impor-
tant line of defense in a GUESS system.

All malicious nodes in the system have the ability
to collude as a single large conspiracy. Doing so gives
them a maximal advantage in poisoning pong-caches
with as many distinct malicious node ids as possible.
Each malicious node is aware of the node ids of all other
malicious nodes in the system. When a malicious node
receives a ping, it responds with a pong that contains
malicious node ids chosen from the entire set of all pos-
sible malicious node ids.

Our first goal is to maximize the number of live
node ids in pong caches in the steady-state. We say
that a GUESS system has achieved “p percent liveness”
when over p percent of the node ids in all of the pong
caches of good nodes in the system are not dead.

Our second goal is to mitigate pong-cache poison-
ing, for the reasons described above. We have two sub-
goals: 1) limit (upper bound) the number of cache en-
tries containing malicious node ids in the steady-state,
and 2) reduce the rate at which poisoning occurs.

Note that we are interested in the steady-state be-
havior of the protocol because if poisoning cannot be
controlled in the steady-state in our idealized model of
the protocol, there may be little hope of controlling poi-
soning in an oscillating, real-world system that imple-
ments the protocol. However, if we can find policies that
work well in the steady-state in our idealized model,
such policies may be good candidates for experimenta-
tion with in real-world systems.

4. PROTOCOL POLICIES
In this section, we describe in more detail the var-

ious protocol policies required in GUESS. Table 1 sum-
marizes the policies and the options that we explore in
this paper.

4.1 Seeding Policy (SP)
When a new node wants to join the network (e.g.,

when it is born), it must initialize, or seed its pong
cache.

We study three seeding policies (SPs), out of many
possible such seeding policies, in this paper:

• Random-Friend (RF). A new node’s cache is seeded
with a copy of some random node’s cache. It is
possible that a node chosen randomly could be ma-
licious, and could seed a good node’s cache with
all malicious entries. The probability that a mali-
cious node is chosen as a random friend increases

Table 1: GUESS Protocol Policies
Policy Options

Seeding Policy (SP) Random-Friend (RF), Popular-Node (PN), Trusted Directory (TD)
Introduction Protocol (IP) Enabled or Disabled

Cache Replacement Policy (CRP) Random, Most-Recent-Used (MRU), Least-Recent-Used (LRU)
ID Smearing Algorithm (IDSA) Enabled or Disabled

as the ratio of the number of malicious nodes to
good nodes increases.

• Popular-Node (PN). A new node’s cache is seeded,
without loss of generality, with a copy of N1’s
cache. Node N1 is the “popular” node. We as-
sume that N1 is not a malicious node, else newly
born nodes would have all of their entries poisoned
immediately. However, some of N1’s entries may
become poisoned as it issues pings and processes
pongs itself.

• Trusted-Directory (TD). A new node’s cache is
seeded with node ids that are guaranteed to be
non-dead (but could be malicious). A “trusted-
directory” node is responsible for maintaining a
list of node ids that are guaranteed to be live. Sim-
ilar to a PN, we assume that a trusted directory
itself is not malicious. While a TD SP may not be
practical in real systems, we include it as a basis
for comparison.

In a real GUESS system that uses popular nodes
or trusted directory nodes for seeding, there exist many
seeding nodes in the system, such that seeding nodes are
not single points of failure. However, to study the basic
trends that result from using either the PN or TD SP, we
use a single seeding node in our evaluations in Section 5.
In addition, since other nodes rely on seeding nodes to
initialize their caches, it is especially critical for seeding
nodes to use containment techniques to minimize the
number of poisoned entries in their caches.

4.2 Introduction Protocol (IP)
Nodes that are newly born do not have their node

ids appear in the pong caches of any of the existing
nodes. While newly born nodes can query existing nodes
because they are seeded appropriately upon birth, we
also need a mechanism by which existing nodes can be
given the opportunity to query newly born nodes. In
this section, we propose a mechanism by which GUESS
may “introduce” the node ids of newly born nodes into
the pong caches of existing nodes. An introduction pro-
tocol (IP) is not part of the original GUESS protocol,
but we show that an IP is essential to achieve a steady-
state in which most cache entries are live.

The GUESS specification envisions deployment in
a hybrid fashion together with the traditional Gnutella
flooding protocol. In such a scenario, existing nodes
can resort to broadcasting ping messages to allow them
to discover newly born nodes. However, doing so re-
quires that the traditional protocol (and all of the per-
formance and security problems associated with it) be
carried forward as the network evolves to incorporate
GUESS. Hence, we feel it is important to study how

to use an IP such that node discovery can take place
without any reliance on the traditional protocol.

A natural opportunity at which to introduce a
newly born node to an existing node is when a newly
born node Ni pings an existing node Nj . After respond-
ing to the ping, the node Nj enters Ni into its cache.
Nj uses its cache replacement policy (see Section 4.4)
to decide which existing entry in its cache to replace.

If an IP is not used, malicious nodes have no incen-
tive to issue pings since it will not help them propagate
their node ids into the caches of good nodes. If an IP is
used, however, then malicious nodes do have an incen-
tive to issue pings, as it can help them propagate their
node ids into the caches of pinged nodes.

4.3 Ping Probe and Pong Choice Policies
A node Ni must decide which node Nj to ping.

The algorithm that a node uses to decide which node
Nj to ping is its ping probe policy (PPP). If a node Ni

pings Nj and does not receive a response within a preset
timeout period, it “marks” Nj as dead. All nodes that
receive pings respond with a pong containing up to |S|
node ids that are not marked dead. The policy that
nodes use to determine exactly which |S| node ids to
respond with is called the pong choice policy (PCP).

There are many possible options that nodes might
have for ping probe and pong choice policies. We con-
ducted some preliminary simulations that experimented
with various PPP and PCP options such as most-results-
first, most-recently-pinged, and random. We found that
the settings for these policies did not have as significant
an effect on liveness or poisoning as did the other types
of policies that we describe, and we only consider us-
ing random PPP and PCPs in this paper. Note that,
however, different choices for PPPs and PCPs may have
an affect on search performance, and various options for
PPPs and PCPs are studied in reference [1].

4.4 Cache Replacement Policy (CRP)
Once Ni receives up to |S| node ids from Nj , it

chooses to replace r ≤ |S| entries in P (Ni) to form
P ′(Ni). In other words, Ni chooses Y ⊆ S and |X| = r.
Node Ni first replaces dead cache entries with those
from the set Y . Ni then chooses the contents of the set
X using a CRP. We consider three CRPs in this paper:

• Random. Ni randomly chooses up to |S| entries
from its pong cache P (Ni). Node Ni excludes any
entries that are marked dead from its choice.

• Most Recently Used (MRU). Ni maintains a last-
time-pinged timestamp associated with each cache
entry, and returns the |S| non-dead entries in P (Ni)
that have the highest last-time-pinged timestamps.

The last-time-pinged timestamp is set to the cur-
rent time when a cache entry is chosen to be pinged.

• Least Recently Used (LRU). Ni maintains a last-
time-pinged timestamp associated with each cache
entry, and returns the |S| non-dead entries in P (Ni)
that have the lowest last-time-pinged timestamps.
The timestamp is updated similarly.

4.5 ID Smearing Algorithm (IDSA)
In addition to the simple CRPs just described, we

develop a more sophisticated cache management policy
to help deal with malicious nodes. In particular, if node
Ni receives a node id Nk as a response in pongs from
many nodes, then it may be the case that either 1) Nk

is a malicious node and is working to have its id prop-
agated to as many good node caches as possible as a
pre-cursor to an attack, or 2) Nk is a good node that
is likely to become overloaded with too many queries
because other nodes happen to be including Nk’s id in
pongs. In either case, it is in the best interest of the
good nodes to balance out the number of times that any
particular node id appears in the pong caches of other
good nodes. That is, good nodes want to replace entries
in their pong cache such that for any of the n node ids
in the system, each of the ids appears in the pong caches
of good nodes with a frequency proportional to 1/n.

To help accomplish this, we use an “ID smearing”
algorithm (IDSA). The algorithm evenly “smears” all
of the available node ids across all of the pong caches
by doing the following locally at each node. When
Ni receives Nk in a pong message from Nj , it checks
whether or not Nk already appears in its cache, P (Ni).
If Nk ∈ P (Ni), then there may be too many copies of
Nk in the network, and we set P ′(Ni) = P (Ni)−{Nk}.
For example, if P (N1) = {N2, N3}, and N1 receives N3

in a pong message from N2, N1 updates its pong cache
such that P ′(N1) = P (N1)− {N3} = {N2}.

In Section 5, we conduct evaluations that show
the IDSA can mitigate pong-cache poisoning attacks.
However, malicious nodes can attempt to manipulate
good nodes that use the IDSA. For instance, a malicious
node M may happen to know that a particular good
node id G2 is in another good node G1’s pong-cache.
If M receives a ping from G1, it can respond with a
pong containing G2, causing G1 to remove a good node
id from its cache, and have one less live id. If an IP
is used, M can then instruct another malicious node to
introduce itself to G1 and take the place of G2’s node
id in the cache. However, this attack requires M to
keep track of which ids it has received in pongs from
which nodes and/or communicate this information to
other malicious nodes. M may also need to retain this
information for quite some time until some malicious
node is pinged by the appropriate good node. The IDSA
nevertheless does “raise the bar” of effort required on
behalf of malicious nodes to poison caches.

4.6 Dynamic Network Partitioning (DNP)
In this subsection, we propose a dynamic network

partitioning (DNP) technique whose goal is to com-
plement the IDSA in keeping the number of malicious
nodes that good nodes interact with low.

The key idea that we employ in DNP is that nodes
do not necessarily need to search the entire network at
any particular instant. If we can limit the subset of
nodes that are searched at any given time, then we can
also limit the number of malicious nodes that can im-
pact the search. As search proceeds, the partition of
the network that is searched (the “active” partition)
can change.

At any given time, a node divides the node id ad-
dress space into a number of partitions and selects one
of those partitions to be its active partition. A node
only accepts node ids into its pong cache from the ac-
tive partition.

The method that we use to partition the network
works as follows. We assume that ids are j-length bit
strings. Each partition is of size 2p, where a node has
the freedom to choose p such that 0 ≤ p ≤ j. There are
2j−p partitions. (If p = j then DNP is not used as the
size of the partition is the size of the entire network.)

Each node chooses a random key, κ, and an active
partition, φ, (0 < φ < 2j−p). A node only accepts
an id a into its pong cache if it falls into partition φ.
The nodes that make up partition φ are those nodes
that have an id such that the value of the j − p least
significant bits of h(a||κ) = φ, where h is a hash function
and the symbol || is concatenation.

Our DNP scheme allows good nodes to dynami-
cally change how they partition the network much more
easily than the amount of effort required by malicious
nodes to acquire node ids in different partitions. Acquir-
ing node ids involves some reasonable (but not necessar-
ily prohibitive) cost for malicious nodes. For instance,
in order to receive pings and send pongs, a malicious
node needs to be able to receive traffic at an id that it
either owns or has acquired by compromising an Inter-
net host. Malicious nodes need to expend some effort
to acquire ids, and, once acquired, they will not be able
to easily spoof a different set of ids immediately.

The parameter κ allows each good node to par-
tition the network in a way that is dynamic and un-
predictable. By using DNP, each good node can use a
different key κ such that malicious parties are not able
to predict which partitions they need to acquire ids in
to poison the caches of particular good nodes, and good
nodes can periodically change the key that they use to
thwart any incoming attack mounted by malicious nodes
that have already acquired a particular set of ids.

Note that we do not assume that malicious nodes
are clustered in any way. Malicious nodes could be ran-
domly distributed across the node id space, in which
case only a fraction of malicious node ids can appear in
a good node’s cache at a particular time. Alternatively,
if malicious nodes are clustered, then they will only be
able to affect the part of the search through a particular
partition.

4.7 Malicious Node Detection
The policies described thus far attempt to use var-

ious cache management strategies to mitigate poison-
ing. In addition to studying how cache management can
help us achieve our goals, we also study malicious node
detectors (MNDs). Our goal in this section is to un-

derstand how well our cache management mechanisms
perform compared to MNDs, and to understand under
what conditions we will be required to use MNDs in
addition to cache management techniques.

A MND takes a node id as input, and attempts
to determine if the corresponding node is malicious. A
MND tries to make this determination based on past
experience interacting with the node, possibly taking
into account the quality and utility of search results re-
ceived from the node, or using such information from
other more “trusted” nodes. Various algorithms based
on reputation systems and other mechanisms have been
proposed (i.e., [11]), and can serve as MNDs. We do not
advocate the use of any particular proposal of a MND,
but we are simply interested in how MNDs may help
deal with some types of attacks. For instance, MNDs
may help us deal with attacks in which malicious nodes
send good nodes inauthentic results. (On the other
hand, MNDs would not help us in a denial-of-service
attack in which malicious nodes poisoned caches until
some critical fraction of all good node caches contained
malicious ids, and then all the malicious nodes simul-
taneously disappeared from the network. MNDs would
not help in such a denial-of-service attack because the
behavior of malicious nodes may be indistinguishable
from that of good nodes until the point at which they
all disappear, in which case it would be too late for a
MND to detect anything.)

We model the accuracy of a MND using a single
parameter, p, the probability that the MND will tell
us that a node is malicious given a malicious node id.
We assume that if a MND is used, it is used as follows:
when a node Ni receives a pong from Nj , it submits all
of the ids received to the MND before considering them
for insertion into its pong cache. In addition, if Ni uses
an IP and receives a query from Nk, then Nk’s node id
is submitted to the MND before its introduction into
Ni’s pong cache is considered.

The quantity 1 − p is the false negative rate of
the MND. Practical implementations of MNDs may also
have a false positive rate, a probability with which a
good node id is deemed malicious. In future work, the
effect of MNDs with various false positive rates can be
studied, but due to space limitations, we only consider
MNDs with false negative rates in this paper.

5. RESULTS
In this section, we present the results of various

evaluations that we conducted using a discrete-event
simulation of the model described above to address the
goals presented in Section 3. While we present the
highlights of our findings here, the interested reader is
referred to our extended paper [6] for more complete
details.

To facilitate simulation, we extended the sets we
described in Section 2 to be functions of time. The set of
nodes N , is a function of time, N(t), in our simulation.
The pong caches P (Ni), ∀i are also functions of time,
P (Ni, t), ∀i, etc. Time advances in discrete-intervals t =
0, 1, 2, etc. Our discrete-event model can approximate
the continuous behavior of a real system as the physical
time between intervals decreases.

Table 2: Baseline Simulation Parameters
Parameter Value

Number of Nodes (at any one time) (n) 100
Pong Cache Size (c) 5

Births / Deaths Per Round (b) 1
Number of Node Ids in Pongs (r) 1

Number of Experiments 100
Ping Probe Policy (PPP) Random
Pong Choice Policy (PCP) Random
Malicious Ping Rate (MPR) 1

We say that all of the events that occur in one
time step occur in a “round.” If node Ni pings Nj ,
receives Nk in a pong, and updates its pong cache at
time t to additionally contain node Nk, then we say
that P (Ni, t + 1) = P (Ni, t) ∪ {Nk}. The ping, pong,
and cache updates for all of the nodes in the system
at a given time t happen sequentially within the same
“round.”

5.1 Simulation Setup
Our goal in this work is to build a fundamental un-

derstanding of the issues and trade-offs involved in using
the various policies we outlined in Section 4 to mitigate
pong-cache poisoning. Our evaluations are not designed
to predict the performance of an actual system, but to
gain an understanding of the trends and trade-offs in-
volved in using the different policies. In the evaluations
described below, we simulated a GUESS network using
the baseline parameters in Table 2.

We estimate that nodes in a GUESS network will
conservatively be able to store approximately five per-
cent of the live node ids in the network in their pong
caches. If a single pong cache entry requires 10-bytes of
storage (4 bytes for an IP address, and 6 bytes of addi-
tional storage for timestamps and other data), then stor-
ing pong cache entries for five percent of the nodes in a
2,000,000 node GUESS system only requires 1 megabyte
of main memory. Such a memory requirement is even
becoming acceptable for traditionally constrained wire-
less devices such as cell phones and PDAs. Larger pong
caches will result in higher numbers of live ids and a
smaller ratio of poisoned ids to live ids than those that
we present in the simulations in this section. Additional
state may also be used to store performance-related data
about some of the node ids in the pong cache, such as
the number of query hits received from a given node,
but such additional state is only required for a relatively
small percentage of the ids in the pong cache.

In our simulations, there are n = 100 nodes in the
network at any instant, and they have pong caches that
can store c = 5 node ids. We confirmed that the same
trends that we see in our small 100-node simulations can
be seen in larger GUESS networks (see our extended
paper [6]), and we clearly expect real GUESS networks
to have much larger numbers of nodes.

The settings for all of the policies used in each
simulation that we present in this paper are shown in
Table 3. Each column of Table 3 corresponds to one of
our simulations, and we refer to them by the column
names in the results below.

Table 3: GUESS Simulation Parameters (Var=Variable, PN=Popular Node, D=Disabled, E=Enabled)
Parameter/Simulation A1 A2 B C1 C2 D1 D2

SP Var Var PN PN PN PN PN
IP D E E E E E E

CRP Random Random Var Random Random Random Random
IDSA D D D Var E D E

Num Rounds 500 500 100000 2000 2000 5000 5000
Mal Nodes (m) 0 0 5 Var 5 Var Var

MPR N/A N/A 1 1 Var 1 1

We assume that each of the good nodes issues a
single ping in every round. While this need not be the
case in a real network at all times, it allows us to model
the effect of pong-cache poisoning when the network is
at its “busiest.” Also, when an IP is used, we assume
malicious nodes issue pings. Malicious nodes may issue
more ping messages than good nodes do. The number
of pings that each malicious node issues in one round
is the malicious ping rate (MPR). While the baseline
MPR that we use is 1, we study the impact of malicious
nodes that issue pings more frequently in Section 5.5.

For accounting purposes, we assume that mali-
cious nodes have pong caches that are of the same size
as good nodes, but that their entries are always poi-
soned. Furthermore, all good nodes use the same SP,
IP, PPP, PCP, CRP, and IDSA settings.

To produce the various graphs we present here,
the corresponding simulations were run 100 times, and
the results were averaged. The y-axis on the graphs
typically measures the total number of live or poisoned
pong cache entries in the system.

After describing some simplifying assumptions that
we made in our simulations, our first order of business
is to analyze which protocol options achieve our first
goal of maximizing the number of live node ids in pong
caches, without the presence of malicious nodes. We
then evaluate which policies minimize susceptibility to
attacks. Our simplifying assumptions are as follows:

5.1.1 Deaths
We assume that one good node dies at random,

and one new good node is born in place of it each round.
That is, δ = |∆(t)| = |B(t)| = 1, G(t + 1) = (G(t) −
∆(t)) ∪ B(t), and N(t + 1) = G(t + 1) ∪M(t + 1), ∀t.
Furthermore, we assume that nodes that are born are
newly born, and have never previously participated in
the system. Nodes that die are not re-born later. In
other words, B(t) ∩ (G(0) ∪ G(1) ∪ ... ∪ G(t)) = ∅, ∀t.
Therefore, we assume that good nodes are born and die
at a constant and equal rate. While this may not be true
for a system in which the number of nodes is growing
or shrinking, we roughly expect this to be true when
the system achieves steady-state. As we recall, our goal
is not to model the performance of an actual system,
but to understand what steady-state trends occur with
respect to cache poisoning when using the policies from
Section 4.

5.1.2 Malicious Nodes
While good nodes may be susceptible to death,

we assume that the set of malicious nodes is constant:

0

50

100

150

200

250

300

350

400

450

500

0 200 400 600 800 1000

L
iv

e
E

nt
ri

es

Num Rounds

Trusted Directory
Trusted Directory (No Queries)

Random-Friend
Popular-Node

Figure 2: A1: Live Entries vs. Number of Rounds

for Various Seeding Policies (No Introductions)

M(0) = M(1) = ... = M(t), ∀t. The set of live good
nodes G(t), on the other hand, changes over time, but
its cardinality is constant, |G(0)| = |G(1)| = ... =
|G(t)|. While we do not vary the number of malicious
nodes in the system in the midst of a simulation, we do
study how different numbers of malicious nodes impact
our ability to mitigate attacks. In evaluations in which
we studied malicious nodes, we measured how the num-
ber of poisoned cache entries increases as many nodes
become malicious.

5.2 Seeding and Introductions
R1. A SP must be used in tandem with the IP

to achieve liveness. When SPs are used in combination
with the IP, a high percentage liveness can be achieved
(e.g., a liveness of 95 percent was achieved using our
baseline simulation parameters).

Figure 2 shows the results of simulation A1 in
which we measured the number of live entries for the
three SPs described in Section 4, with no malicious
nodes in the system. Simulation A1 was run with no
IP, a random CRP, and the IDSA disabled.

At time t = 0, seeding from the trusted directory
results in 500 live node ids since newly born nodes are
given c = 5 guaranteed-to-be-live entries from the di-
rectory. However, when the RF or PN policies are used,
we initialize all of the pong caches at t = 0 to contain
just one live node id, and the system starts out with a
total of 100 live ids.

0

50

100

150

200

250

300

350

400

450

500

0 50 100 150 200 250 300 350 400 450 500

L
iv

e
E

nt
ri

es

Num Rounds

Trusted Directory
Random-Friend

Popular-Node

Figure 3: A2: Live Entries vs. Number of Rounds

for Various Seeding Policies (With Introductions)

As time advances, the number of live node ids in
the TD case drops because some nodes die, and the
ids pointing to them become invalid. In the case of
the RF and PN policies, the number of live ids in the
system starts increasing as nodes exchange pings and
pongs. Unfortunately, after some number of rounds, the
RF and PN policies suffer from the same problem. In
both policies, when new nodes are born, they seed their
caches by copying the caches of some other node. Over
time, as nodes die, all of the node ids contained in the
pong caches of the initial set of nodes in the system die.
Since newly born nodes are simply copying the cache
entries that originated from the initial set of the nodes
in the system, all of these caches entries are bound to die
as well. In other words, in the current scenario, newly
born nodes only learn about nodes that existed before
them, and never learn about nodes that are born after
they are.

Nodes must use an IP if the “current generation”
of nodes is to learn about “future generations” of nodes.
Figure 3 shows the outcome of simulation A2 in which
we employed an IP. The figure shows that any of the
SPs we considered can be used to achieve over 475 live
node ids out of a possible 500 in steady-state. In other
words, we achieved a liveness of 95 percent when SPs
were used in combination with an IP.

We also studied the different rates at which poi-
soning occurs with the RF and PN SPs, and we found
that poisoning occurs more slowly with PN than with
RF SP. Poisoning occurs slower with PN SP because the
popular node must first be poisoned before newly born
nodes can be poisoned. We refer the interested reader
to our extended report [6] for more details. In the re-
mainder of our evaluations in this paper, we use PN SP
by default.

5.3 Cache Replacement Policy (CRP)
R2. While all the CRPs that we study result in

inevitable cache poisoning, MRU CRP slows the rate of
poisoning the most.

0

50

100

150

200

250

300

350

400

450

500

0 10000 20000 30000 40000 50000 60000 70000

Po
is

on
ed

 E
nt

ri
es

Number of Rounds

Random
LRU

MRU

Figure 4: B: Poisoned Ids vs. Number of Rounds

for Various CRPs

Figure 4 is the result of simulation B in which
we held all simulation parameters constant and varied
the CRP. The simulation measures the increase in the
number of poisoned node ids over an extended num-
ber of rounds in a system with m = 5 malicious nodes
for various CRPs. The figure shows that almost all of
the cache entries become poisoned after about 60,000
rounds. The poisioning of almost all of the entries
is “inevitable.” In our extended paper [6], we present
an analysis explaining why this is the case for a ran-
dom CRP and a TD SP. The result of the analysis is
that if a GUESS system is initialized with a non-zero
number of malicious nodes and pong-caches are popu-
lated with a uniform random distribution of node ids,
then, during each ping-pong exchange that a good node
conducts, the probability that the number of malicious
entries in its cache will increase is always larger than
the probability that the number of malicious entries in
its cache will either stay constant or decrease. The rate
of poisoning and the inevitability of it may vary based
on which CRP and SP is used.

From our results in Figure 4, we can see that us-
ing non-random CRPs can slow the rate of poisoning.
When LRU CRP is used, cache entries are discarded
(replaced) in the order in which they are pinged. When
a particular node is pinged, its id is “pinned” in the
cache, and becomes a candidate for being pinged again
for up to c− 1 rounds. Poisoning occurs slightly slower
with LRU CRP than random CRP because a live, good
node that is pinged cannot be “randomly” replaced. A
malicious node id cannot take the place of a pinged,
good node id for c−1 rounds. The good node may even
be pinged again, and so long as it is live, can continue
to exist in the cache and prevent a malicious node id
from taking its place.

MRU CRP slows poisoning more effectively than
LRU or random CRP. When a malicious node is pinged
under a MRU CRP, its id is replaced by the malicious id
from the pong. The number of malicious node ids does
not increase. Furthermore, when the next introduction
is received, the malicious node id is replaced (since it is

the most recently used). If the node introducing itself
is not malicious, then the number of poisoned ids de-
creases. Otherwise, the number of poisoned ids in the
cache stays the same. The only case in which the num-
ber of malicious nodes in a good node’s cache increases
is when the good node pings another good node that
died since it was either inserted in the cache or pinged
last, and it immediately receives an introduction from
a malicious node. In this case, the malicious node id
takes the place of the good node that is marked dead.
Hence, while inevitable cache poisoning does occur with
MRU CRP, it occurs slower than with LRU or random
CRP.

The “catch” with MRU CRP is that it leads to bad
search performance [1] since many cache entries are not
updated and die before their next use. Furthermore,
live node ids that are introduced into the pong cache
via an IP are subsequently replaced with ids that are
more likely to be stale from pong messages. To deal
with this problem, we suggest dividing the pong cache
into two caches– a small pong cache and a large intro-
duction cache. Node ids received in pongs are placed
in the pong cache, and the pong cache is managed us-
ing a MRU CRP to slow poisoning. Node ids received
from introductions are placed in the introduction cache.
Node ids in the introduction cache are highly likely to
be live since these nodes recently issued queries, and
the introduction cache is managed using a FIFO (first-
in-first-out) CRP. If many of the entries in the pong
cache are dead, ids from the introduction cache can be
used to issue queries and provide reasonable search per-
formance. 1

In the next section, we show that by taking ad-
vantage of an IDSA, we can not only slow the rate of
poisoning, but we can limit it in the steady-state as well.

5.4 ID Smearing Algorithm (IDSA) and
Dynamic Network Partitioning (DNP)

R3. The use of the IDSA limits the number of
poisoned entries in the steady-state, and the IDSA mit-
igates poisoning as the number of malicious nodes in-
creases up to the cache size. DNP can be used together
with IDSA to mitigate poisoning as the number of ma-
licious nodes increases beyond the cache size.

Figure 5 shows the results of simulation C1, and
demonstrates that an IDSA limits the number of poi-
soned cache entries in the steady state when c = m = 5.
While just over 450 cache entries are poisoned when
the IDSA is not used, approximately 107 cache entries
are poisoned when the IDSA is used. The number of
poisoned entries is reduced by a factor of four when
the IDSA is used and c = m. The IDSA is success-
ful in mitigating poisoning because the use of the IDSA
causes malicious nodes to “limit their own success” in
poisoning caches. If a good node Ng has two poisoned
cache entries, Nm1 and Nm2, then when one of the node
ids in these cache entries is pinged, say Nm1, there is

1This dual-cache scheme is similar to that in refer-
ence [1]. The pong cache is equivalent to the link cache,
and the introduction cache is analagous to the query
cache, except the source of the ids are introductions
and not pongs.

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14

Po
is

on
ed

 E
nt

re
s

Num Malicious Nodes

IDSA Disabled
IDSA Enabled

Figure 5: C1: Poisoned Ids vs. Num Malicious

Nodes with IDSA

a non-negligible probability that Nm1 will return Nm2’s
id, causing Ng to remove Nm2 from its cache as required
by the IDSA. The more malicious entries that a good
node’s cache contains, the higher the probability that,
when pinged, one of these malicious nodes will return
an id of one of the other malicious nodes in the cache,
and end up causing the good node to remove a malicious
id from its cache. A similar effect that occurs (but is
less likely) takes place when Ng’s cache contains Nm,
and receives an introduction (a ping) from Nm itself.
Use of the IDSA results in removing Nm from the good
node’s cache. For these reasons, the success of malicious
nodes’ poisoning efforts is self-regulated when the IDSA
is used.

We assume that a malicious node returns the id
of another malicious node at random. Malicious nodes
could try to work harder at poisoning by keeping track
of exactly which good nodes have received which mali-
cious node ids, such that malicious nodes can collude to
ensure that the same malicious node id is never provided
to the same good node twice. This could be done in an
attempt to thwart the good node’s use of the IDSA.
However, good nodes could decide to drop ids out of
their caches randomly from time to time to easily thwart
this attack, at the expense of application performance.
Malicious parties would then need to obtain more mali-
cious node ids to poison the good nodes because at any
time they would be unsure as to whether or not sending
an already used malicious node id would end up causing
that malicious node id to be dropped out of the good
node’s cache or re-inserted.

We can see from Figure 5 that as the number
of malicious nodes increases beyond c = 5, the IDSA
becomes less and less effective. Since the IDSA only
eliminates node ids from a cache when it receives an id
that is a duplicate of one of its entries, the more unique
ids the malicious nodes have, the fewer malicious entries
the IDSA is able to eliminate.

IDSA is able to significantly mitigate poisoning so
long as the number of malicious nodes does not exceed
the cache size (c = 5, in Figure 5). For instance, if

only 5 percent of the nodes in the system are malicious,
approximately 10 percent of a good node’s cache is poi-
soned. However, if the number of malicious nodes is
twice the cache size and 10 percent of the nodes are
malicious, over 75 percent of a good node’s cache is poi-
soned. To deal with a number of malicious nodes that
exceeds the good node’s cache size, DNP (as described
in Section 4.6) can be employed to keep the number of
poisoned entries low. If we expect that the number of
malicious nodes in the network is greater than the cache
size, then we can partition such that the expected num-
ber of malicious nodes per partition is no greater than
the cache size. For instance, if we expect that 10 per-
cent of the nodes in the network are malicious, then 2
partitions can be used to keep no more than 10 percent
of the good node’s caches from being poisoned.

In general, with high probability, it is the case that
if m random malicious node ids are in the network, then
on average, at most m

2j−p will appear in a node’s pong
cache. If DNP is not used, then as long as c > m,
IDSAs significantly mitigate poisoning, whereas when
DNP is used, then as long as c > m

2j−p , IDSAs are able
to significantly mitigate poisoning. The use of DNP
allows clients to be able to tolerate more malicious nodes
in the network. The downside of using DNP, however, is
that it makes it harder for good nodes to systematically
search the entire network, due to the fact that partitions
created by different values for κ may create overlapping
partitions.

5.5 Malicious Ping Rate (MPR)
R4. The use of the IDSA limits the number of poi-

soned entries in the steady-state, even when malicious
nodes issue pings more frequently than do good nodes.

In this subsection, we vary the malicious ping rate
(MPR), and measure the effect on the number of poi-
soned entries. When an IDSA is not used, the rate at
which poisoning occurs increases proportionally when
malicious nodes increase MPR. That is, malicious nodes
will be able to poison a given number of entries in the
system in a fewer number of rounds if they increase their
MPR.

However, when the IDSA is used, we find that even
if malicious nodes increase MPR, the number of cache
entries that can be poisoned in the steady state does not
increase. Figure 6 shows how the number of poisoned
entries varies over time when the IDSA is used for differ-
ent MPRs. Each of the curves in the figure corresponds
to different MPRs. At t = 0, the number of poisoned
entries is over 25 for each of the curves because there are
m = 5 malicious nodes in the system with a cache size of
c = 5 each, and a few good nodes have some malicious
node ids randomly distributed in their caches.

In the first 50 rounds, we can see from the figure
that the higher the MPR, the more cache entries are poi-
soned. For instance, if the MPR is one, approximately
125 entries are poisoned when t = 50, whereas if the
MPR is 20, just under 300 entries are poisoned. When
malicious nodes issue pings more frequently, they are
able to have more of their ids inserted into the caches
of good nodes for the first time due to the use of the
IP. However, continued pinging by malicious nodes re-

sults in having their ids eliminated out of good node
caches due to the use of the IDSA. As the system pro-
gresses towards steady-state, the more frequently that
malicious nodes issue pings, the fewer steady-state poi-
soned entries they are able to maintain. For instance,
with a MPR of one, malicious nodes are able to main-
tain approximately 100 poisoned entries at t = 2000. If
malicious nodes issue pings 20 times as often, they are
able to maintain only 65 poisoned entries at t = 2000.
Hence, the use of the IDSA limits the number of poi-
soned entries in the steady-state, even when malicious
nodes issue pings more frequently than do good nodes.

There may be some advantages for malicious nodes
to issue pings more frequently than good nodes. Specif-
ically, the higher the MPR, the higher is the peak num-
ber of poisoned entries. If MPR is 20, for example, then
the peak number of poisoned entries is 290, whereas if
MPR is one, then the peak number of poisoned entries
is about 125. Malicious nodes could use high MPRs
to quickly poison a significant number of cache entries,
and execute their attack at the point that the maximum
number of entries has been poisoned. For instance, ma-
licious nodes using an MPR of 20 could all leave the
system when the peak number of cache entries are poi-
soned to execute a denial-of-service attack that leaves
the network fragmented. Of course, malicious nodes
will have to determine when the peak number of cache
entires is poisoned.

From Figure 6, we can also see that the higher
the MPR, the “sharper” is the peak. At a MPR of 20,
for instance, over 250 cache entries are in the poisoned
state for only 100 rounds. By contrast, at a MPR of 5,
just over 200 cache entries are in the poisoned state for
approximately 500 rounds.

What we can learn from the sharpness of the peaks
is that if malicious nodes want to quickly poison as many
cache entries as possible, and then execute, say, a denial-
of-service attack in which they all disappear, the effec-
tiveness of the attack will be dependent upon how well
and how quickly malicious nodes can sample the num-
ber of poisoned entries in the system. If malicious nodes
issue pings at a high rate, they will have a small win-
dow of time during which it will be optimal for them to
execute their attack.

On the other hand, if malicious nodes are inter-
ested in conducting an attack over an extended period
of time, the use of the IDSA prevents them from having
too many poisoned entries in the steady-state regardless
of how fast or slow they issue pings. For instance, if the
malicious nodes would like to provide inauthentic re-
sults over an extended time period, the IDSA will limit
the number of cache entries that the malicious nodes
can “own” and use in mounting their attack.

5.6 MND Results
The IDSA limits poisoning by attempting to dis-

tribute node ids equally across all of the pong caches.
While we are able to eliminate a significant amount of
poisoning with the IDSA, if we would like to further
eliminate poisoning, we may need to employ a MND.
Result R5 tells us how well a MND used on its own
(without the IDSA) mitigates poisoning, and we com-

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000

Po
is

on
ed

 E
nt

ri
es

Number of Rounds

1
5

10
20

Figure 6: C2: Poisoned Ids vs. Time for Various

MPRs with IDSA

0

50

100

150

200

250

300

350

400

450

500

0 0.2 0.4 0.6 0.8 1

Po
is

on
ed

 E
nt

ri
es

Detection Probability

m=1
m=2
m=5

m=10
m=25

Figure 7: D1: Malicious Node Detection with IDSA

Disabled

0

50

100

150

200

250

300

350

400

450

500

0 0.2 0.4 0.6 0.8 1

Po
is

on
ed

 E
nt

ri
es

Detection Probability

m=1
m=2
m=5

m=10
m=25

Figure 8: D2: Malicious Node Detection with IDSA

Enabled

pare the performance of a MND to the performance of
the IDSA. Result R6 considers using a MND and the
IDSA together.

R5. A MND needs to be at least 50 percent ac-
curate to achieve equal or better results than the IDSA
when c = m.

Figure 7 shows how the number of poisoned en-
tries in the steady state decreases as the accuracy of a
MND increases. If the number of malicious nodes in
the system is equal to the cache size (m = 5), we can
see that a MND with an accuracy of 50 percent results
in about 100 poisoned entries in the steady state. Fig-
ure 5 discussed in Section 5.4 shows that enabling the
IDSA (without using a MND) also results in about 100
poisoned entries (when c = m = 5).

R6. A MND may be required in systems in which
the number of malicious nodes is greater than the pong
cache size.

Figure 8 shows the level of steady state poison-
ing that can be achieved when both the IDSA and a
MND are employed. If the number of expected mali-
cious nodes in the system is on the order of the cache
size (m = 5), we can see that employing a MND re-
sults in a marginal benefit even if the detector is over
90 (but not 100) percent accurate. On the other hand,
as the number of malicious nodes increases significantly
beyond the cache size, detectors of increasing accuracies
can significantly reduce poisoning.

DNP can also be used to mitigate poisoning as the
number of malicious nodes increases beyond pong cache
size, but DNP does make it harder for good nodes to
systematically search the entire network due to periodic
re-keying. On the other hand, MNDs are likely to be
more complicated to implement than DNP.

6. RELATED WORK
Much research on security in P2P systems has

worked to mitigate attacks against four distinct, but
related, system properties: availability, authenticity, ac-
cess control, and anonymity. As explained in Section 3,
our work here focuses on addressing attacks against the
first two of these system properties, availability and au-
thenticity, in a GUESS P2P network.

While GUESS is just beginning to be studied by
the academic research community [19, 1], some research
does exist on security in traditional Gnutella systems.
In particular, references [7] and [5] study availability and
authenticity issues in traditional Gnutella. Work has
also been done that studies how to use a P2P network
to prevent DoS attacks on the Internet [12]. Papers
such as [4] and [16] study how to use P2P networks to
provide anonymity to users. Current P2P networks are
plagued by digital rights management and access control
issues, and reference [2] outlines some of the problems
in this area.

While the papers that we have mentioned so far fo-
cus mainly on unstructured P2P networks, references [17]
and [3] outline how security issues in DHTs might be-
gin to be addressed. For example, reference [3] imposes
additional structure in DHT routing tables to reduce
the fraction of entries that can be malicious, just as
our DNP scheme imposes additional constraints on the

pong-cache to reduce poisoning.
We refer the reader to reference [14] for more com-

plete coverage of related work.

7. CONCLUSION
In this paper, we defined a model of a GUESS

network. We outlined the key decisions that nodes need
to make to discover new nodes and manage their pong
caches to mitigate pong-cache poisoning. We ran sim-
ulations based on our model, and evaluated different
options for the key decisions. Based on the results of
some of our simulations, we found that:

• An IDSA can be used to limit poisoning in the steady-
state. An IDSA is most effective when the number of
malicious nodes is less than or approximately equal
to pong-cache size.

• A DNP scheme can be used to reduce the number of
malicious node ids that can poison a pong cache at
any one time. A DNP can be used together with an
IDSA to tolerate a number of malicious nodes that
exceeds pong-cache size.

• If the number of malicious nodes is greater than pong
cache size, a MND can also be used together with
the IDSA to limit poisoning in the steady-state.

• Introductions are essential to achieving liveness. We
propose adding introductions as a basic mechanism
in GUESS.

• We suggest using MRU CRP to slow down the rate
of poisoning. However, we observe that MRU CRP
does not limit poisoning in the steady-state.

Finally, while we studied the GUESS protocol in
particular, other P2P protocols such as FastTrack and
eDonkey use protocols similar to GUESS for resource
discovery, and we expect that our results are applicable
to such networks as well.

8. ACKNOWLEDGEMENTS
Thanks to Qi Sun and Prasanna Gannesan for in-

sightful discussions on GUESS behavior. Thanks also
to the anonymous referees for helping us identify addi-
tional strengths of our work, and for pointing us in di-
rections that helped us address limitations of our work.

9. REFERENCES
[1] H. Garcia-Molina B. Yang, P. Vinograd.

Evaluating guess and non-forwarding peer-to-peer
search. In 24th International Conference on
Distributed Computing Systems (ICDCS 2004),
Tokyo, Japan, 2004.

[2] P. Biddle, P. England, M. Peinado, and
B. Willman. The darknet and the future of
content distribution. Digital Rights Management
Workshop 2002, http://crypto.stanford.edu/
DRM2002/ darknet5.doc.

[3] M. Castro, P. Druschel, A. Ganesh, A. Rowstron,
and D. Wallach. Security for peer-to-peer routing
overlays. In Fifth Symposium on Operating
Systems Design and Implementation (OSDI ’02)
(Boston, Massachusetts), 2002.

[4] I. Clarke, O. Sandberg, B. Wiley, and T. Hong.
Freenet: A distributed anonymous information
storage and retrieval system. In Workshop on
Design Issues in Anonymity and Unobservability,
pages 46–66, 2000.

[5] E. Damiani, S. De Capitani di Vimercati,
S. Paraboschi, P. Samarati, and F. Violante. A
reputation-based approach for choosing reliable
resources in peer-to-peer networks. In Proc. of the
9th ACM Conference on Computer and
Communications Security, Washington, DC, USA,
November 2002.

[6] N. Daswani and H. Garcia-Molina. Pong-cache
poisoning in guess (extended version).
http://dbpubs.stanford.edu/pub/2003-51.

[7] N. Daswani and H. Garcia-Molina. Query-flood
dos attacks in gnutella networks. In Proc. of the
9th ACM Conference on Computer and
Communications Security, Washington, DC,
November 2002.

[8] S. Daswani and A. Fisk. Guess protocol
specification. http://groups.yahoo.com/ group/
the gdf/ files/ Proposals/ GUESS/ guess 01.txt.

[9] J. Douceur. The sybil attack. IPTPS, 2002.

[10] Gnutella development forum (gdf).
http://groups.yahoo.com/ group/ the gdf/.

[11] S. Kamvar, M. Schlosser, and H. Garcia-Molina.
Eigenrep: Reputation management in p2p
systems. In Proceedings of the 12th International
WorldWide Web Conference, 2003.

[12] A. Keromytis, V. Misra, and D. Rubenstein. Sos:
Secure overlay services. In Proceedings of ACM
SIGCOMM’02, Pittsburgh, PA, August 2002.

[13] C. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker.
Search and replication in unstructured
peer-to-peer networks. In Proceedings of the 16th
International Conference on Supercomputing,
pages 84–95. ACM Press, 2002.

[14] B. Yang. N. Daswani, H. Garcia-Molina. Open
problems in data-sharing peer-to-peer systems. In
International Conference on Database Theory.
Siena, Italy., 2003.

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp,
and S. Shenker. A scalable content-addressable
network. In Proceedings of ACM SIGCOMM, San
Diego, CA, August 2001.

[16] M. Reiter and A. Rubin. Crowds: anonymity for
Web transactions. ACM Transactions on
Information and System Security, 1(1):66–92,
1998.

[17] E. Sit and R. Morris. Security considerations for
peer-to-peer distributed hash tables. In IPTPS,
Cambridge, MA, USA, March 2002.

[18] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In ACM
SIGCOMM, pages 149–160, San Diego, CA,
August 2001.

[19] D. Tsoumakos and N. Roussopoulos. Adaptive
probabilistic search (aps) for peer-to-peer
networks. http://citeseer.nj.nec.com/568292.html.

